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Mendelian cytogenetics. Chromosome
rearrangements associated with mendelian
disorders

Niels Tommerup

The first successful mapping of a mendelian
disorder by chromosome rearrangements was
that of the Duchenne muscular dystrophy
locus to Xp21.1-5 Since then, chromosome ab-
errations which delete, truncate, or otherwise
rearrange and mutate specific genes have not
only helped in the mapping of other disease
loci,6 but have turned out to be key elements
for the rapid isolation of disease genes by
positional cloning strategies.7 Accordingly, a
listing of the clinical disorders in which associ-
ated chromosome rearrangements have been
described forms a part of the Human Gene
Mapping Workshops.6 Although the early suc-
cess led to a proposal for systematic cytogene-
tic analysis of subjects with mendelian dis-
orders,8 this has rarely been done. A common
feeling is that, as mutations, these rearrange-
ments are rare exceptions. The aim of the
present review is to document that they may be
rare, but are not exceptions, and to focus on
factors which may influence their occurrence
and facilitate their detection.
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Contiguous gene syndromes in relation
to mendelian genetics
Genetic disorders are usually classified into
mendelian, chromosomal, and multifactorial
categories. Mendelism involves transmission
patterns of traits which traditionally are

thought to be determined by single genes. The
mere fact that a chromosome rearrangement
may lead to the development of a mendelian
disorder suggests that this distinction between
mendelian and chromosome disorders may be
arbitrary.9 This is illustrated by Miller-Dieker
syndrome (MDCR), lissencephaly with a char-
acteristic facial appearance, that was originally
listed as an autosomal recessive condition
owing to the presence of familial cases with
two or more affected sibs.9 All familial cases

analysed have so far been shown to be associ-
ated with unbalanced segregation of familial
translocations or inversions, leading to seg-

mental aneuploidy (deletion) of a distal seg-

ment of 17p.1''2 Thus, MDCR not associated
with a chromosome abnormality is probably
best explained as an autosomal dominant con-

dition where all mutations are de novo.

MDCR also illustrates a mutational
mechanism that may eventually explain a sub-

stantial part of the heterogeneity and overlap
in syndromology: contiguous gene syndromes
where microscopic or submicroscopic dele-
tions (or duplications) involve an array of
closely positioned genes.'314 A purpose of the
molecular characterisation of contiguous gene
syndromes is to identify individual genes
responsible for specific components of the
phenotypic complex. This is probably best
illustrated by the molecular studies of
deletions and translocations involving llp13
associated with various combinations of
Wilms's tumour, aniridia, genitourinary mal-
formations, and mental retardation (WAGR
complex).'5 The resulting isolation of candi-
date genes for Wilms's tumour (WT1)'6 7 and
aniridia (AN2, PAX6)'8 '9 now provides a
means for molecular studies and delineation of
monogenic conditions within 1 lpl3.2"24 Simi-
larly, the dissection of the phenotype in
MDCR has begun with the demonstration of
submicroscopic deletions in cases with isolated
lissencephaly.2526
Any visible chromosome imbalance almost

invariably represents a contiguous gene dis-
order, but few chromosomal syndromes in-
clude features of sufficient specificity to permit
a correlation with a recognised mendelian dis-
order. This includes many of the classical
chromosome disorders,27 as well as newly
recognised ones.28 Although these chromo-
some aberrations may not have immediate im-
plications for known mendelian traits, future
molecular dissection of these disorders may
change this.

Chromosome rearrangements in
relation to autosomal dominant,
autosomal recessive, and X linked
disease
Specific chromosome rearrangements have
predominantly been described in autosomal
dominant (AD) and in X linked conditions. Of
the 625 chromosomally mapped loci associated
with genetic disorders, 54 (8-6%) are X
linked.29 However, more than one third of the
approximately 70 mendelian disorders associ-
ated with a specific chromosome rearrange-
ment are X linked6 (figure). This excess can be
explained by almost routine application of
cytogenetic analysis in two particular groups of
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patients: females affected with X linked dis-
eases, suggesting X;autosome translocations,
and males suffering from two or more X linked
disorders, suggesting a contiguous gene syn-
drome. Since there are no a priori reasons to
believe that chromosome rearrangements
should be less frequent in AD than in X linked
disorders, the underrepresentation in AD dis-
orders is probably because of ascertainment
bias.
The cytogenetic data in autosomal recessive

(AR) disorders are so scanty that reliable state-
ments regarding their frequency cannot be
made. In only one AR disorder (Zellweger
syndrome) has more than one chromosome
rearrangement been described, a de novo dele-
tion and a de novo inversion.303' A specific

chromosome mutation will only show an AR
locus if the other allele happens to be mutated
(unmasking of heterozygosity),32 and this will
be a rare occurrence as the gene frequencies for
even the most common AR disorders do not
exceed 1/25 to 1/50. Owing to the number of
recessive traits, and the relatively high fre-
quency of familial translocations and inver-
sions in man,33 some of these breakpoints may
affect recessive loci. Thus, several murine
balanced translocations are lethal in the
homozygous state.34 The risk of unmasking of
heterozygosity by a transmissible chromosome
rearrangement will increase with the number
of individuals that receive the rearrangement.
In addition, familial translocations may
predispose to the formation of uniparental
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Table I Chromosome rearrangements in deletion viable regions.
Disorder Chromosomal Type of rearrangement
(locus symbol) localisation

Deletions (No) Locus specific type

Multiple'78b 179a
Multiple72 180a
Multiple70 181a
i 180a
Multiplemat)6568a8d 122a 183a

Multiple52a7d 54d

3187a 188a 186c?

5189a 191a 190b 183d
Mult' le'93-196a4199a 172d

Multiple70
Multiple207 208a
Multiple72 209 210a,b
Multiple37 211
Multiple213-2l7a,d7214a,d 8a

Muit ile77 72a,b
3163a I 4a

Multiple7' 72a,b

488a,d
4233a
Multiple234 236 237a,d
Multi le234 238a,d3239-24Ial
Multiple70a
Multiple'27 244 245 248a,d

173b
1249a
Multiple"o- 2 25 26a,d
Multiple70

Multiple?703257 259 260a

Multiple(pat)41851,,d

Multiple3844a,b,c?,d
7264 2698

Multiple7Oa 267 268a
Multiple798
Multiple701
Multiple37 174b 271a,b

5276-280a,c
Multiple282 283a,d
1 285a

Multiple52a,b,d
130a

t(X;3)(p22;ql2)182.

inv(l5)(pl qI3)mat6'696t(4;I 1)(q22;p13)60b
t( 1 ;22)(p I 3;q 12.2)?8
t(5;1 1)(qI3.1;p13)26
t(5;12l)(pl 1;p13)'6'6t(8; 1 2)(pi I 1 p 1 3) 184b

t(3;8)(p21;pl 1)185b
t(5;10)(q22;?)'

t(3;1 1)(q21;q23) 90b
t(3;4)(q23;p15.2)20a
t(3;8)(q23;p2 1.1)17

t(2;22)(q14.1;ql 1.1)212b
Multiple2""a
t(3;7)(p21 .Ip13)960b
t(6;7)(q27;p 13) 61b
t(6;7)(qI2;pl 3)162

t(4;5)(q2 1;p 15 *3)2
t(4;6)(q2 1;p24)2 2b

t(7;9)(q36;q34)235b

t(2;8)(q33;q24. 1)127
t(4;8)(pl5.3;q24. 1)127
t(8;1 1)(q24.1 1;p15.5)246
inv(8)(ql 1.23q21 .1 )247b

t(1;13)(p34;ql 3)250b

t(4;22)(q12;q I 2.2)25b
t(4;15)(ql2q21;ql 1)2511
1 X;A translocation (see ref 61)85 autosomal translocations61b
inv(15)(pl3ql 3)pat64
Multiple4'
t(5;7;9)(qI 1 .2q34;q21 .2q31 .3;q22. 1)21,
t(7;9)(ql 1.21;p12)263b

t(X;7)(q2 1.2;p 14)2711
t(X;1 3)(q21 .2;p 1 2)274,
t(X;3)(q28;q21 )275a
t(X;10)(q28;ql 1.2)275,
dir ins(8)(q24. 1 ql 3.3q21.13)281b

inv(2)(q35q37.3)217a
inv(7)(pl2ql 1.23)31a

See Appendix for explanation of locus symbols. a=de novo aberration. b=familial transmission. c=evidence of germlinemosaicism. d= unbalanced familial reciprocal translocation/inversion. e= Meera-Khan, personal communication. x = visiblyunbalanced translocation.

disomy, whereby AR mutations can be
reduced to homozygosity.35 The occasional
occurrence of an inherited balanced transloca-
tion or inversion would therefore not be unex-
pected in AR disorders.36

The effect of chromosome localisation
on types and frequencies of
chromosome rearrangements
Exact determination of frequencies of chromo-
some rearrangements in mendelian disorders
can only be made by systematic studies of
specific mendelian disorders. This has only
been done in a few disorders, retinoblastoma
(RB1) being the classical one. The results from
RB1 may not necessarily be valid for other

disorders, and one factor that will influence the
frequency of chromosome rearrangements in a

specific disorder is the chromosomal localisa-
tion of the corresponding gene.

Visible deletions among liveborns are absent
or extremely rare for several regions of the
human genome (figure),27 probably because
they are incompatible with fetal survival.37
Whereas deletions are the most frequent type
of rearrangement in those disorders which
map to the 'deletion viable' regions (table 1,
figure), visible deletions do not occur in live-
borns affected with mendelian disorders
mapping to the 'deletion non-viable' regions
(table 2). The division of the genome into a
deletion viable and non-viable part may have
consequences not only for the type and fre-
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Table 2 Chromosome rearrangements in deletion non-viable* regions.

Disorder Chromosomal Type of rearrangement
(locus symbol) localisation

Miscellaneous Locus specific type

BWS 1 p15.4-15.5 del(I 1)(p 1 1 p I 3)203't t(9;1 l)(p 1l.1 lpl5.5)mato' +
del( 1 )(pl 1 1p3)205,t t(4;-11)(pl 5.2;pl 5.4)mat 03b
multiple dup(l lp)pat103 202d t(I1 ;22)(pI 5.5;qI 2)mat204b

t(l 1;16)(pI5.5;qI2)mat053b
t(I 1;12)(pI5.5;q13.1)mat'03b
inv(l1)(pl 1.2pI5)mat' 26b

inv(l l)(p15.4q22.3)mat053b
CMPD1 17q24.3-25.1 46,XX,t( 1;1 7)(q42. 1 ;q25< 95'

46,XX,inv(17)(ql2q25)96a
CMPD1/ 17q24.3-25.1 46XY,t(2; 1 7)(q35;q23-24)97a
SRA1 46,XY,t(7; 1 7)(q34;q25)95"

46,XY,t(l13;17)(q331;25 /95
EDA Xq13.1 t(X;9)(q13.1;p24)225 228a

t(X;1 2)(q 13.1 ;q24.2)227a
t(X1l)(q13. ;p36.33)224a

F9 Xq27 t(X; 1)(q27;q23)229a
FGDY Xql3 t(X;8)(q13;p21 .2)18b
IDS Xq28 t(X;5)(q27;q31)243a
IPI Xpll t(X; 15)(p ll;ql 1) or (q ll ;p li)42a

t(X;9)(p 1;q34)'43a
t(X; I 7)(p I 1 ;p I 1.2) 15a
t(X;9)(p I 1 ;q33.2) 15a
t(X;13)(pl 1.21;q12.3)'44a
t(X; I 0)(p l ;q22)'46a
t(X;4)(q2 1 ;q28)9
t(X;5)(p 1 I.2;q35.2) 147a
45,X/46,Xr(X)41'a

MNK Xql3.3 t(X;2)(ql3.3;q32.2)"7a
t(X;1)(ql 3.3;q21 )§'
ins(X)(p 11 .4ql 3.3q2 1 .2)mat06

NDP Xpl I t(X;10)(p 1 ;p1 4)253a
inv(X)(p 11 .4q22)254b

NFI 17ql 1.2 t(l;l7)(p34.3;ql 1 2)92b
t(17;22)(ql 1.2;ql 1.2)93b

+ ?r(l7)(cen-ql2), del(17)(cen-ql2)91
OCRL Xq26.1? t(X;3)(q25;q27)256'

t(X;20)(q26. 1 ;ql 1 .2)257
RSTS 16pl13.3 t(2;16)(p 13.3;p 13.3?84,

t(7; 16)(q34;pl13. 3)8 ~a
t(I6;22)(p13.3;?)
inv(l1 6)(p 1 3.3;q I 3)-6
inv(16)(p 13.3q 13)1

See Appendix for explanation of locus symbols. * Including regions with only 1-3 reports of viable deletions. t Breakpoints not at
established p1p5.4-.5 loci. + Personal observation. § J Beck, personal communication. Cited in ref 87.

quency of rearrangements in mendelian dis-
orders, but also for selection of strategies for
their detection.

DISORDERS MAPPING TO REGIONS WHERE

DELETIONS ARE VIABLE
Retinoblastoma, Wilms's tumour, and aniridia
The early detection of cases with deletion of a
D group (No 13) chromosome in association
with retinoblastoma (RB1 )38-40 led to extensive
cytogenetic screening of large series of
patients.4''4 Consequently visible deletions
have been found in 2 to 4% of all patients with
RB1 when examined by metaphase technique,
and in 4 to 8% of patients when examined by
high resolution techniques. Reciprocal trans-
locations have been detected in approximately
1% of patients in several independent surveys
using both metaphase and prometaphase reso-
lution, corresponding to 10% of the detected
rearrangements. Thus, between 5 and 10% of
all cases with RB1 have a visible chromosome
mutation.

Larger systematic cytogenetic studies have
not been reported in association with Wilms's
tumour (WT1)/aniridia, so a direct compari-
son with the individual traits included in the
Wilms's tumour/aniridia/genitourinary mal-
formation/mental retardation (WAGR) com-
plex cannot be made. However, in three large
series of Wilms's tumour patients, altogether
comprising 1335 cases,45-47 aniridia was

observed in 23 cases (1 7%). Furthermore, 1/3
of aniridia cases are sporadic and, of these, 1/3
develop Wilms's tumour.48 A visible deletion
of lipl3 was seen in all 18 cases with com-
bined WT1/aniridia in three high resolution
cytogenetic surveys,474950 supporting the fact
that most subjects with this combination have
a visible deletion. All evidence supports a
single map position for aniridia at llpl3'.5 If
so, 1/3 x 1/3 (10%) of independent cases with
aniridia may have a visible deletion. Since both
traits are easily recognised, this is in line with
the large number of cases with the WAGR
complex and deletions of l 11p3 that have been
reported.52 As expected for contiguous gene
syndromes, visible deletions and more com-
plex rearrangements within 1lp13 may not
affect both loci.50 53 54 The limited distance
between WT 1 and the candidate aniridia
loci (700 to 100kb)'855 explains why a few
persons with Wilms's tumour and aniridia
have deletions below the limit of microscopic
resolution.5556 Balanced chromosome re-
arrangements involving lip13 have not been
reported in association with Wilms's tumour,
but one translocation with a breakpoint within
the region has been seen in association with
Potter syndrome,57 and three reciprocal trans-
locations have been reported in familial aniri-
dia.5 0 Taken together, the data are com-
patible with a frequency of chromosome
rearrangements in all independent cases with
WT1, aniridia, and WT1/aniridia in the same
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range as observed in RB1 (2 to 10%), with
deletions being by far the most frequent type
of mutation.

Disorders associated with imprinting:
Prader-Willi and Angelman syndromes
Repeated observations of rearrangements
involving chromosome 15 in patients with
Prader-Willi syndrome (PWCR) led to numer-
ous systematic studies.61-6 As a result, 60% of
patients have been found to carry detectable
chromosome 15 rearrangements, mostly dele-
tions within 15qi 1-13 (table 1). The cytogene-
tic spectrum of 300 PWCR subjects with a
chromosome 15 abnormality included 182
interstitial deletions, 34 unbalanced reciprocal
translocations, 14 Robertsonian transloca-
tions, 16 small marker chromosomes, and four
duplications,61-3 plus six balanced transloca-
tions and one pericentric inversion.6' The
inversion was inherited from an unaffected
father.64 Assuming that 60% of PWCR cases
have a cytogenetic defect, the frequency of
apparently balanced rearrangements thus ap-
pears to be close to that of RB1 (7 * 60/
300) = 14%. However, it should be empha-
sised that balanced rearrangements were not
reported among 358 PWCR patients studied in
larger chromosome surveys in the period 1981
to 1991.6-63

Cytogenetic deletion of 15ql 1-13 is also
observed in 50 to 60% of subjects with Angel-
man syndrome (ANCR).65 68 Among the fewer
than 100 cases with ANCR that have been
studied so far, one apparently balanced re-
arrangement has been reported, a maternally
inherited inversion with a breakpoint within
15q13,68 which was associated with a de novo
submicroscopic deletion in the affected child.69
The frequency of visible deletions in RB1,

PWCR, and ANCR thus varies considerably
(- 5 to 60%), whereas the frequency of appar-
ently balanced cytogenetic rearrangements
may be within the same order of magnitude
(_ 1%).

X linked disorders
On the X chromosome, the male deletion
viable regions involve Xp22.3, Xp2l, Xq21,
and Xq25 (figure).'7 7 Owing to the excellent
morbid anatomy of the X chromosome,29 these
deletions are associated with recognisable
mendelian traits, either as single gene dis-
orders73 or as part of contiguous gene syn-
dromes.'77>72 In a survey of five males with
DMD and additional clinical signs suggesting
a contiguous gene disorder, visible deletions
were detected in all five cases.7' Bivariate flow
karyotyping of 10 visible deletions within
Xp2 1 associated with contiguous gene syn-
dromes has provided a size estimate of these
deletions int athe a 4 to 14 Mb.72
The frequency of visible deletions in

patients with single gene disorders mapping to
Xp21 appears to be lower than observed in
many autosomal disorders. In a systematic
survey of 165 males with Duchenne or Becker
muscular dystrophy only, no chromosome re-

arrangements were observed.75 This may be
somewhat surprising since submicroscopic de-
letions are extremely common in DMD, and
since intragenic deletions in the 2-4 Mb DMD
locus might potentially reach the lower limit of
microscopic resolution.

Disease associated deletions involving the
distal part of Xp22.3 are seen in both males
and females, in males associated with recessive
traits and in females with dominant traits.70
Most other X chromosome deletions are pre-
ferentially inactivated in female carriers, either
without phenotypic effects or associated with
Turner symptoms, including gonadal dys-
genesis or secondary amenorrhoea/premature
menopause.76 However, deletion of the region
Xq27 may result in preferential activity of the
deleted X chromosome,77 and it has been sug-
gested that this might be because of deletion of
a locus which is involved in the normal X
inactivation process.78 If so, visible or submic-
roscopic deletions of Xq27 should be con-
sidered, along with X;autosome translocations,
in females affected with disorders mapping to
this region.

DISORDERS MAPPING TO REGIONS WHERE
DELETIONS ARE NON-VIABLE
In contrast to deletions, breakpoints associated
with constitutional autosome translocations
detected in an unbiased way in large series of
prenatal diagnoses79 (figure), as well as in
reported X;autosome translocations,80 81 are
distributed all over the genome. Hence, the
presence of disease specific translocations
would not be expected to be influenced by the
chromosomal localisation of a disorder to the
same extent as deletions. One modification of
this is that the G-C rich chromosomal reverse
(R) bands contain many more genes than the
A-T rich G bands.8283 Therefore, disease spe-
cific breakpoints in translocations and inver-
sions should predominantly be located in R
bands, which is indeed the case (figure).

If RB 1 is the prototype of a clearly recog-
nised disease localised within a chromosomal
region where gross deletion is compatible with
fetal survival, Rubinstein-Taybi syndrome
(RSTS), von Recklinghausen neurofibromato-
sis (NF1), and, to some extent, campomelic
dysplasia (CMPD 1) exemplify disorders map-
ping to regions where deletions do not or only
rarely occur.

Rubinstein- Taybi syndrome, von
Recklinghausen neurofibromatosis, and
campomelic dysplasia
A locus for RSTS has been assigned to
16p 13.3 after the identification of several inde-
pendent chromosome rearrangements with
breakpoints within this region.8>87 Apart from
small distal deletions associated with the hae-
moglobin H/mental retardation syndrome,88
viable visible deletions of l6pl3 have not been
described at all.278587 This, together with the
detection of submicroscopic deletions in 25%
of RSTS subjects with normal karyotypes,87
indicates that it is not deletions as such that do
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not occur or that are not compatible with the
RSTS phenotype, but rather the size of the
deletions.
Both RB1 and WT1 are tumour suppressor

loci.89 However, it is unlikely that this feature
in itself is associated with the high frequency
of visible deletions seen in these disorders.
Neurofibromatosis type 1 (NFl) also involves
a tumour suppressor gene that maps to
17q1 1.2.6 The largest deletion which has so far
been described in a patient with NFI was
380 kb in size,90 well below the limit of micro-
scopic resolution. This is in line with the
general absence of reported constitutive dele-
tions of this part of chromosome 17 (figure).27
In the only published case with a visible dele-
tion of the proximal part of 17q, the deleted
segment was still present in most of the cells as
a small ring chromosome.9' In contrast, and by
analogy with the findings in RSTS, reciprocal
translocations have been described in NF1
(table 2).9293

In campomelic dysplasia (CMPD1), chro-
mosome analysis has been performed in a
number of cases because of the frequent asso-
ciation with 46,XY sex reversal (SRA1).94
Four de novo reciprocal translocations and one
inversion, all involving 17q24-25, provide
compelling evidence for the localisation of
both CMPD1 and SRA1 to this region.9997
Only a few viable deletions involving the distal
part of 1 7q have been reported.98'00 Thus,
CMPD 1 may illustrate a disorder mapping to a
region where viable deletions do occur, but
only rarely. Although CMPD1/SRA1 has been
suggested to be a contiguous gene syn-
drome,95 101 visible deletions have not been
reported in patients with CMPD 1/SRA 1.
Thus, the observed pattern of chromosome
rearrangements in CMPD 1 resembles the pat-
tern in disorders mapping to regions where
deletions do not occur at all.

Disorders associated with imprinting:
Beckwith-Wiedemann syndrome
Genetic imprinting of one or more loci within
lip15 has been implicated in the aetiology of
Beckwith-Wiedemann syndrome.'02 103 As in
Prader-Willi syndrome,61104 several different
types of chromosome rearrangements have
been encountered in BWS, including balanced
rearrangements with breakpoints in the critical
region of lip15, exclusively of maternal ori-
gin, and duplications of the distal part of
Ip 1 5, exclusively of paternal origin (table 2).
It has been suggested that the duplications
lead to excess expression of a paternally
imprinted growth promoting gene within the
region, such as insulin growth factor 2 (IGF2),
whereas the balanced translocations might af-
fect a maternally imprinted regulator within
the region.'03 Viable deletions involving the
distal part of l 1p5 have not been described,27
so it is not likely that such deletions will be
seen in association with BWS either.

X linked disorders
Menkes disease illustrates an X linked disorder
which maps to an R band region (Xql3.3)

where visible deletions have not been de-
scribed in males.051'06 In a continuing cyto-
genetic survey of more than 200 unrelated
males with Menkes disease, not a single case
with a visible deletion has been detected.'07
Although the proven X linked contiguous

gene syndromes map to those regions where
cytogenetic deletions are viable, X linked con-
tiguous gene syndromes located within most R
band regions would be expected to be more
numerous, considering the high gene density
of R bands. However, these disorders will
probably be associated with either submicro-
scopic rearrangements'08 or with 'balanced'
rearrangements which will lead to limited loss
of material. The same argument applies to
autosomal contiguous gene syndromes map-
ping to deletion non-viable regions.

So far, few mendelian disorders have been
associated with visible duplications.'03 109 In
general, duplications are better tolerated than
deletions,27 so a smaller part of the genome will
be duplication non-viable. However, it is rea-
sonable to assume that for disorders associated
with duplication of genetic material, the chro-
mosomal localisation may also influence the
occurrence of visible chromosome mutations.

The effect of the parental origin of de
novo chromosome rearrangements
De novo chromosome rearrangements are pre-
dominantly of paternal origin, including all
X;autosome translocations examined so
far.95 110(116 This skewed parental origin has
several implications for the detection of struc-
tural rearrangements in mendelian disorders.

DE NOVO REARRANGEMENTS OF THE X
CHROMOSOME
As most chromosome rearrangements are
paternal in origin, those involving the X must
occur predominantly in females, where the
phenotypic effect will be influenced by the X
inactivation pattern. In balanced X;autosome
translocations, where the translocation X is as
a rule the active one,808' truncation of a disease
gene will lead to affected status in the female
carrier. This mechanism is a main contributor
to the disproportionately large number of X
linked disorders where structural rearrange-
ments have been described (figure). Since af-
fected females with normal chromosomes are
less likely to be reported, the actual frequency
of X;autosome translocations in affected
females is unknown. The best estimate may
come from Menkes disease (MNK), where
diagnosis, including that of females, has been
centralised to a few centres in the world. So
far, two of six known MNK females are trans-
location carriers (J Beck, personal communica-
tion).'07117
Males will only inherit an X;autosome

translocation if the translocation does not lead
to gonadal dysgenesis, a frequent finding in
females with breakpoints on the X chromo-
some.76 In addition, an associated mendelian
disorder in the mother will have to be suffi-
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ciently mild to allow reproduction. As a conse-
quence, X;autosome translocations are in
general rare in males.801'8 This, together with
the presumed male non-viability of deletions
involving the major part of the X chromosome
(figure), led to the suggestion that intrachro-
mosomal rearrangements, such as inversions
and shifts, will be likely types of cytogenetic
rearrangements in males affected with most X
linked disorders.'07 These rearrangements are

probably very rare.1"921

DISORDERS WHERE GENOMIC IMPRINTING IS
INVOLVED
As discussed previously, deletions involving
almost the same region of 15qll-13 are fre-
quently observed in both PWCR and ANCR.
However, the deletion is always of paternal
origin in PWCR61'3 and always of maternal
origin in ANCR. 122 Although the proportion of
affected subjects carrying a cytogenetically
visible deletion is the same in the two dis-
orders, two significant aetiological factors sup-
port a higher frequency of PWCR than
ANCR: (1) the large excess of maternal non-

disjunction'23 that may predispose to subse-
quent uniparental maternal disomy, as

observed in PWCR,'24 125 and (2) the presumed
higher frequency of de novo rearrangements
(deletions) of paternal origin which will also
lead to PWCR.

In Beckwith-Wiedemann syndrome, all
balanced rearrangements involving the distal
part of lip 15 have been found to be inherited
from the mother, similar to a preponderance of
maternal transmission of BWS in non-cyto-
genetic familial cases.'03'26 Together with the
predominantly paternal origin of de novo re-

arrangements, this implies that few if any de
novo balanced rearrangements will be
observed in subjects affected with BWS. In
contrast, the mother may frequently carry the
balanced rearrangement as a de novo re-

arrangement of paternal origin, or may have
inherited the rearrangement from her father.
A similar sex dependent transmission pat-

tern might be possible in balanced rearrange-
ments associated with ANCR69 and PWCR,6'l 64
where the phenotypic effect of truncation or

deletion69 will be influenced by the parental
origin of the inherited rearrangement.68 Thus,
apparently balanced rearrangements in PWCR
should be of paternal origin,6' and of maternal
origin in ANCR.69

It has now become an almost routine pro-

cedure to search for the parental origin of
chromosome rearrangements. Owing to the
excess of de novo rearrangements of paternal
origin, demonstration of a maternal origin of
de novo rearrangements in a specific disorder
will be much more significant with respect to a
possible involvement of genomic imprinting'22
than demonstration of a paternal origin.95

Mutational aspects with relevance for
positional cloning
ARE BREAKPOINTS IN BALANCED
REARRANGEMENTS LOCUS SPECIFIC?
Although the majority of reciprocal transloca-
tions and inversions included in tables 1 and 2
are balanced at the cytogenetic level, a few of
these have been shown to be associated with
large submicroscopic deletions. 127128 If this
were a general feature, the assumption that
these rearrangements involve single breaks
within the target locus would be erroneous.93
However, of 23 apparently balanced re-
arrangements studied at the gene level,129'38 22
had breakpoints within the candidate gene
locus (table 3). The assumed locus specificity
of breakpoints in cytogenetically balanced re-
arrangements in mendelian disorders therefore
seems justified, even though these rearrange-
ments may not be truly conserved at the se-

quence level, since small deletions from a few
bp to < 30 kb have been noted (table 3).

LOCALISATION OF BREAKPOINTS OUTSIDE THE
SPECIFIC TARGET

Six unrelated reciprocal translocations have
been reported in retinoblastoma patients,4'
along with 14 specific reciprocal and eight
insertional translocations. The odds therefore
seem to favour a rearrangement as being dis-
ease specific. However, they also illustrate that
the coincidental occurrence of a rearrangement
is not uncommon. Further studies of the
family, linkage studies in other families, search
for similar published reports, and comparison
with the clinical features associated with dele-
tions or duplications of the regions involved
are needed when considering the significance
of a detected rearrangement.
Even if a structural chromosome mutation

turns out to be the aetiological factor, some
mutational mechanisms have been documented
or suggested which may limit the utility of
both balanced and unbalanced rearrangements
for positional cloning, or at least provide

Table 3 Molecular details of assumed locus specific rearrangements.

Disorder No of studied No which truncate No with sequenced/ Size of
(locus symbol) rearrangements the specific locus estimated deletion deletion

DMD 11 iis29132 2 71/72 bp129
5 kb'132

GCPS 3 2166
MNK 2 2138251252
NFI 1 135
RB1 4 4133 134 1 < 30 kb'34
TCD 1 i136
wS1 1 i 137

Total 23 22
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conflicting data as to the disease or locus
specificity.

Spreading of X inactivation in X;autosome
translocations
Although the majority of X;autosome translo-
cations associated with mendelian disorders
have involved the X linked locus, it would be
logical to assume that the autosomal break-
point would occasionally represent the target.
Most of the documented cases have been X; 13
translocations associated with RB1.41 139 At the
cytogenetic level, 13q14 harbouring the RB1
locus seemed to be intact in all cases. The
suggested mechanism for the development of
RB1 in these cases is spreading of X inactiva-
tion into the autosomal segment including the
RB1 locus.'39 Inactivation of a putative locus at
9q32-34 by spreading of X inactivation has
also been suggested in two X;autosome trans-
location carrying girls with incontinentia pig-
menti or hypomelanosis of Ito.'"

The paradox of incontinentia pigmenti (IP1
and IP2)
At least seven, possibly eight,9 X chromosome
rearrangements have been detected in sporadic
cases of IP, with most of the breakpoints
within Xpl 1.141-147 IP is considered an X linked
dominant disorder, which is lethal in males,
and which only occurs in females as a result of
the functional mosaicism associated with ran-
dom lyonisation. The paradoxes of IP are as
follows. (1) The locus for familial IP has been
assigned to Xq28 by linkage analysis and not to
Xp 11.148149 Therefore, two loci associated with
IP (IP1 and IP2) have been invoked. (2) It has
been suggested that two, maybe three, of the
translocation carriers'43 145 did not have IP but
hypomelanosis of Ito (HI).'40150 HI has been
considered the 'negative' of IP because the
abnormal hypopigmented skin areas are distri-
buted in the same pattern. The disorder may
be a clinical manifestation of mosaicism or
chimerism, as evidenced by the frequent asso-
ciation with chromosomal mosaicism involv-
ing a variety of different chromosomes. 50151 (3)
Several different X chromosome breakpoints
have been detected in the chromosomal re-
arrangements associated with IP.'52-'54 The
distance between two distinct regions of break-
points within Xp 1, one close to the centro-
mere and one more distal, is at least 2 5 Mb,'54
suggesting that if IPI exists, the locus must be
extremely large, or several loci within Xp 11
may be involved. (4) Of two of the transloca-
tions stated to be associated with HI, one maps
to the distal region and one to the proximal
region in Xpl l .'54

Considering the similar distribution of skin
defects in IP and HI, the defect in these
sporadic cases with IP may also involve soma-
tic mosaicism, perhaps associated with X inac-
tivation. One of the rearrangements involved a
r(X),'' so dynamic mosaicism associated with
ring chromosome instability might even be
involved,'55 in which case the gene(s) respon-
sible for the pigmentary abnormalities might

be situated anywhere on the X chromosome
(for example, IP2 in Xq28). One implication of
this would be that positional cloning of a
putative IPl locus defined by X chromosome
breakpoints154 may be impossible.

Unmasking of mutations by rearrangement
induced non-random X inactivation
If the normal X chromosome contains a
mutated locus, non-random X inactivation of a
structurally abnormal X chromosome may in-
cidentally lead to clinically affected status of a
female.'56 The erroneous conclusion that the
disease locus is regionally defined by the
breakpoints of the rearrangement may be
avoided by careful X inactivation studies. The
possibility exists that this mechanism may be
involved in IPL. It is uncertain whether a
similar mechanism might be involved in two
X;autosome translocations with different
breakpoints on Xp in Rett syndrome,'57 158 a
disorder in which X linkage has been sug-
gested by almost exclusive involvement of
girls, but where linkage analysis seems to have
excluded the X chromosome.'59

Localisation of breakpoints close to but outside
the open reading frame
The locus for Greig cephalopolysyndactyly
(GCPS) has been pinpointed to 7p13 by three
balanced familial translocations, 6'1'62 by dele-
tions,'63164 and by linkage studies.'65 By the
candidate gene approach,7 two of the three
familial translocations were found to interrupt
a zinc finger gene GLI3 located within 7p 13.166
However, the breakpoint in the third translo-
cation occurred about 10 kb downstream of the
3' end of GLI3. It was speculated that as a
result a cis acting element was brought into the
region of GLI3, thereby deregulating its
expression. 166

Dynamic mosaicism associated with ring
chromosomes
Carriers of ring chromosomes harbouring tu-
mour suppressor genes may be at increased
risk of developing chromosome specific types
of tumours, for example, r(l 3) carriers may
develop RB 1, r( 11) carriers WT 1, r(22) car-
riers meningioma, etc.'55 Conversely, the de-
velopment of a specific type of tumour in a ring
carrier may suggest that a tumour suppressor
locus is located somewhere on that chromosome.
Apart from the primary deletion associated
with the formation of the ring, ring chromo-
somes are predisposed to secondary somatic
rearrangements initiated by sister chromatid
exchanges. The result may be fragmentation,
gain or loss of ring material, including com-
plete monosomy (dynamic mosaicism). A
comparison between the localisation of the
primary breakpoints and the likely tumour
suppressor loci involved suggests that the
secondary instability may be the most import-
ant factor predisposing to the development of
tumours.'55 Thus, unlike conventional consti-
tutional deletions which can be used for the
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generation of disease related deletion maps,
correlations between the primary ring associ-
ated deletions and phenotypic features should
be regarded with caution.
Dynamic mosaicism may not be limited to

the development of tumours, but should also
be considered as a possible mechanism in
the development of other disorders in ring
carriers. One possible association is Russell-
Silver syndrome which shares many clinical
features with ring chromosome 15 deficien-
cies.'67

Conclusions
The present review has primarily been con-
cerned with those rearrangements which can
be expected to be encountered in a majority of
mendelian disorders. Thus, the fragile site at
Xq27 associated with the most common form
of X linked mental retardation has not been
discussed since it is so far the only fragile site
known to be associated with a specific clinical
entity.
Although deletions occur less frequently

than reciprocal translocations in newborn
screening series,33 any deletion of visible size
will have a big chance of involving part or all of
a gene. This may explain why viable deletions
are the most frequent type of cytogenetic mu-
tation in mendelian disorders. In contrast, a
single breakpoint or a submicroscopic deletion
associated with a translocation or inversion has
to be more precisely located in order to involve
a specific locus.
The majority of visible deletions associated

with mendelian disorders has been observed in
sporadic cases (tables 1 and 2). A few excep-
tions have been reported, which may be
explained by the presence of mosaicism in a
parental carrier, or a less severe phenotype
associated with small deletions within certain
regions, such as 13q14 associated with RB1.4
In most other situations, the assumption that
chromosomal deletions are reproductive lethal
mutations is probably true. However, familial
occurrence of deletions associated with men-
delian disorders can be expected in two con-
ditions: deletions involving the male deletion
viable regions of the X chromosome, and fami-
lial translocations, especially insertional trans-
locations.4' 54 168172
Apart from insertional translocations, other

rare types of familial and sporadic rearrange-
ments have been identified in association with
mendelian disorders, in part during chromo-
somal surveys.9' 106 As mentioned previously,
intrachromosomal rearrangements, including
shifts, may be the expected type of chromo-
some mutation in males affected with the
majority of X linked diseases.'07 Whether this
apparent accumulation of otherwise rare types
of rearrangement may reflect ascertainments
which are different from those usually encoun-
tered in cytogenetics (prenatal diagnosis,
MCA/MR, spontaneous abortions, etc) is at
present unknown.
Without valid data derived from systematic

cytogenetic surveys in the majority of dis-
orders, the best estimate of a basic frequency

of chromosome rearrangements in an auto-
somal dominant disorder is approximately 1 %,
corresponding to the frequency of balanced
translocations and inversions observed in RB1
(and maybe in PWCR and ANCR). If, in
addition, visible deletions within the specific
chromosome region are viable, this figure will
be considerably higher.
The data favour that cytogenetic rearrange-

ments will be present in a small, but not
insignificant, fraction of subjects affected with
many mapped and unmapped mendelian dis-
orders. The detection of a chromosome muta-
tion will have obvious counselling implications
in the individual family. Considering the
impact even a single specific rearrangement
may have for gene mapping and cloning, a
more systematic effort to detect these re-
arrangements should be pursued. In terms of
value for rapid molecular isolation of the locus
of interest, rearrangements involving locus
specific breaks (for example, balanced translo-
cations and inversions) will in general be the
most valuable ones. Although the presence of
additional congenital anomalies, other unex-
pected diseases, spontaneous abortions, still-
births, etc, may suggest the involvement of a
chromosome mutation in a patient or within a
family, subjects with balanced rearrangements
may not suffer from additional disorders.'07
Furthermore, translocations and inversions
may be both familial and de novo mutations
(tables 1 and 2). Therefore, some of the most
valuable mutations in terms of positional clon-
ing may only be detected by systematic analy-
SiS.

If a reciprocal translocation is detected in a
disorder that has not been mapped previously,
the odds will favour a breakpoint within an R
band being the specific one. In some cases this
may ease subsequent attempts to confirm the
specificity of new translocations, for example,
by linkage mapping. Furthermore, for large
scale screening programmes, high resolution
chromosome analysis may be too cumbersome
and time consuming. Screening strategies can
be devised which in part will alleviate this. In
disorders with a known chromosomal localisa-
tion, complete karyotyping by high resolution
technique may not be needed. In disorders
mapping to regions where deletions are un-
likely to be viable, normal good quality meta-
phase technique may be sufficient to detect the
single break rearrangements that can be
expected. In addition, the deletion map shown
in the figure may provide a basis for tentative
exclusion mapping of mainly autosomal dom-
inant disorders, where repeated chromosome
analysis has failed to identify rearrangements.
Such disorders might be expected to map
within the deletion non-viable or less viable
part of the genome. This was the case with two
of the most recently mapped disorders,
R5T58587 and CMPD1 95
Linkage mapping will be greatly eased by

the rapidly increasing numbers of highly poly-
morphic microsatellites which can be analysed
by the PCR technique. 173 In this context a
continuous registration and clinical follow up
of subjects with known chromosome re-
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arrangements will become increasingly im-

portant. Whenever a disease has been mapped
to a specific chromosome region, rapid rein-

vestigation of subjects carrying chromosome
rearrangements within that region for key
clinical features may provide essential map-

ping and clinical data. This approach was used
successfully to detectchoroideraemia 174 in a

patient with a previously reported Xq21 dele-
tion, 175 and to show reduced nerve conduc-

tance velocity in a patient with a large visible
duplication encompassing the CMTIA locus
on 17p.i10
The rapid construction of complete YAC

and cosmid contigs176177 Will greatly facilitate

future mapping and isolation of specific dis-
ease breakpoints/genes, for example, in com-

bination with in situ hybridisation techniques.
The detection of rearrangements associated
with mendelian diseases will therefore remain
an important challenge for the clinical cyto-

geneticist. Many cytogenetic laboratories may

be discouraged from systematic studies by the

rarity of mendelian disorders and by the

expectation of a relatively low frequency of
associated cytogenetic rearrangements. As has
been shown so convincingly in other fields of
human genome mapping, concerted action
would be the logical way to ensure a systematic
detection of these highly valuable mutations in
man.
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